Neurologen und Psychiater im Netz

Das Informationsportal zur psychischen Gesundheit und Nervenerkrankungen

Herausgegeben von den Berufsverbänden für Psychiatrie, Kinder- und Jugendpsychiatrie, Psychotherapie, Psychosomatik, Nervenheilkunde und Neurologie aus Deutschland.

Tiermodell: Neubildung von Nervenzellen aus Stammzellen aufgeklärt

Wissenschaftler haben ein neues Modell entwickelt, das das erste Mal detailliert nachweist, woher originär die neu nachgebildeten Nervenzellen bei Zebrafischen stammen.

Nach Hirntraumata bei Zebrafischen werden verlorengegangene Nervenzellen durch vorhandene neuronale Stammzellen so effizient ersetzt, dass sich größere Gehirnregionen komplett von selbst wiederherstellen. Obwohl die Regenerationsfähigkeit des Gehirns bei Fischen seit 50 Jahren vermutet wurde, blieben die Herkunft der neugebildeten Nervenzellen und die steuernden Mechanismen bisher ungeklärt. Nun ist es erstmals Dresdner Regenerationsforschern des DFG-Forschungszentrums für Regenerative Therapien Dresden (CRTD) und dem Biotechnologischen Zentrum der TU Dresden (BIOTEC) gelungen, die Quelle der wiederhergestellten Nervenzellen zu identifizieren.

Schwerwiegende Verletzungen des menschlichen Gehirns beispielsweise durch Traumata führen zu einer massiven Zerstörung von Nervenzellen. Der damit einhergehende Verlust der Gehirnfunktion ist dauerhaft, da eine Neubildung von Nervenzellen in geschädigten Gehirnarealen praktisch nicht stattfindet. Im Gegensatz dazu besitzen andere Wirbeltiere wie Salamander und Fische die Fähigkeit, große Regionen ihres zentralen Nervensystems, zum Beispiel die Netzhaut, das Rückenmark und das Gehirn, auch nach schwerwiegenden Verletzungen wieder zu erneuern. Mit seiner Arbeitsgruppe hat Prof. Dr. rer. nat. Michael Brand, Direktor des DFG-Forschungszentrums für Regenerative Therapien Dresden sowie des Biotechnologischen Zentrums der TU Dresden nun ein neues Modell entwickelt, das das erste Mal wissenschaftlich detailliert nachweist, woher originär die neu nachgebildeten Nervenzellen stammen, die die Regeneration des erwachsenen Zebrafischgehirns ermöglichen. Dafür wurden neuronale Stammzellen und von diesen abstammende neugebildete Nervenzellen genetisch dauerhaft markiert (mit Hilfe des sogenannten Cre/loxP-System) und dadurch sichtbar gemacht.

Normalerweise teilen sich beim Zebrafisch die neuronalen Vorläufer- oder Stammzellen im Außenbereich des Gehirns. Bei diesem Prozess entstehen neue Nervenzellen, die ausschließlich in diesem Randbereich eingebaut werden. Mit einer Kanüle verletzen die Dresdner nun die Mitte des Zebrafischgehirns. „Dabei werden rund 20 Prozent des Vorderhirns geschädigt“, erläutert Dr. rer. nat. Volker Kroehne die Versuchsreihen der Forschungsgruppe. Diese Verletzung würde ein Säugetier nicht überleben. Kroehne führt weiter aus: „Der Fisch kann die zerstörten Areale durch einen auf neuronalen Stammzellen basierenden Mechanismus wiederherstellen. Diese neuronalen Vorläuferzellen, sogenannte radiale Gliazellen, beschleunigen ihre Zellteilung und erhöhen damit die Produktion von neuen Nervenzellen, die dann in die Mitte des Gehirns wandern und die verlorenen Zellen im Verletzungsgebiet ersetzen.“ Langzeitstudien von mehr als einem Jahr zeigten, dass die regenerierten Nervenzellen permanent im Fischgehirn verbleiben und wahrscheinlich dauerhaft in das neuronale Netzwerk eingebaut werden. Interessanterweise unterscheidet sich der neu entdeckte stammzellbasierte Regenerationsmechanismus grundlegend von dem des Herzens und des Skeletts bei Fischen: Dort entstehen neue Herzmuskel- und Skelettzellen nämlich ausschließlich aus vorhandenen ausgereiften Zellen, die sich in undifferenzierte Entwicklungsstufen zurückbilden und danach mit der Zellteilung beginnen (Dedifferenzierung).

Ein Hauptproblem bei Verletzungen im erwachsenen menschlichen Gehirn ist die Bildung von Narbengewebe, das unter anderem durch Ablagerungen von sternförmigen Gliazellen (Astrozyten) entsteht. Genau diese Verwandten der menschlichen Gliazelle, die radialen Gliazellen, erzeugen im Zebrafisch kein Narbengewebe, sondern neue Nervenzellen. Mit histologischen Methoden haben die Dresdner Regenerationsforscher ebenfalls nachgewiesen, dass im geschädigten Gehirn von Zebrafischen keine Narbenbildung stattfindet. Die Gehirne von Mensch und Zebrafisch unterscheiden sich zwar oberflächlich betrachtet hinsichtlich Größe und Aussehen, sind aber neuroanatomisch und genetisch eng verwandt, bedingt durch ihre gemeinsame evolutionäre Abstammung. Es ist daher von grundlegender Bedeutung, die Regenerationsfähigkeit der Zebrafische zu verstehen. In den Gehirnen von erwachsenen Fischen entstehen lebenslang neue Nervenzellen, die dauerhaft verlorene Nervenzellen ersetzen können. Das Wissen um die Mechanismen der Regeneration bei Fischen könnte in Zukunft dazu beitragen, neue therapeutische Ansätze zur Förderung der Heilung des menschlichen Gehirns, bei Krankheiten und nach Verletzungen zu entwickeln.Fachartikel: Development 2011, DOI 10.1242/dev.072587Quelle: idw